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The numerical solution of problems in fluid dynamics is discussed in terms of a 
Dynamics-of-Contours (DOC) methodology. Elements of the flow are represented 
by contour points (or lines or surfaces) that move relative to the fluid in a manner that 
rigorously conserves mass, momentum and energy, and also represents the transient 
dynamics. The principal advantage of this technique is that it automatically gives fine 
resolution of flow features in regions of detailed structure, and coarse resolution where 
not much is occurring. Several examples are presented to illustrate the results of test 
problems. 

The numerical calculation of high-speed fluid dynamics is especially difficult 
for problems that require local regions of fme resolution in a fluid that is strongly 
distorting. Classical Lagrangian techniques are excellent for achieving resolution 
of details moving with the fluid, but accuracy decreases rapidly as the configuration 
distorts; in addition, it is difficult to assure that the fine resolution is always 
present only where required. Pure Eulerian methods, on the other hand, are 
excellent for studying strong distortions, but exhibit considerable difficulty in the 
achievement of resolution. A variety of modified or combined techniques have 
therefore been developed and used with varying degrees of success; a bibliography 
of some of these is given in Ref. [l]. 

The purpose of this report is to describe a new type of technique that is neither 
Lagrangian nor Eulerian, but nevertheless possesses some of the best features of 
both. The coordinates are contour lines of the basic quantities to be conserved, 
namely, the densities of mass, momentum and energy. The calculation method 
consists of moving these contours in such a way as to represent solutions of the 
full nonlinear, time-dependent equations of motion. We refer to the technique 
as a Dynamics-of-Contours (DOC) method. 

* This work was performed under the auspices of the United States Atomic Energy Commission. 
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Several novel features and properties are introduced by this type of numericai 
solution technique. 

I. The fluid configuration is represented by several overlapping sets of 
coordinates. Each of these refers to a particular quantity, and the discrete entities 
used in the representation are marker particles, called fitrons, which show the 
Locality at which the fluid has the specific field-variable value appropriate to the 
fured magnitudes carried by each f-tron. The letter f may refer to mass density p 
to momentum density J’J’Zj(~pZfj) or to energy density e(rpE). For examp!e, a 
p-tron corresponding to p = 1.4 gm/cm3 marks at all times the position within 
the fluid at which the density is equal to 1.4 gmjcm”. 

2. The j&ons usually move relative to the fluid, the various kinds often 
moving in several different directions. In addition, there will arise circumstances 
in whichf-trons must either be created or destroyed. 

3. Appropriate equations of motion will require the interaction of each 
J%ron with others of its own or different kinds, so that the calculations wili require 
a process for determining whichf-trons are the neighbors of each other. 

4. To accurately represent the behavior of a true fluid, the f-tron motions 
will have to be governed by the rigorous principles of mass, momentum and 
energy conservation. 

5. Representation of the fluid configuration by ,f-trons automaticaily maxi-, 
mizes efficiency in the attainment of resolution. This is because the greatest der~sity 
of f-trons always occurs exactly where needed, namely, in regions of greatest 
detail in Bow structure. Where the fluid properties vary slowly in space, the.f_trons 
are widely dispersed and accordingly not wasted. 

6. In contrast to Eulerian calculation methods, the DOC technique possesses 
rotational and Galilean invariance, since there is no tie to a laboratory reference 
frame. 

7. Although the DOC method is especially/ suitable for one-dimensional 
problems (in plane, cylindrical or spherical coordinates), the extension to several 
space dimensions appears possible, even though difficulties are introduced: as 
discussed below. 

8. espite the unaccustomed nature of the f-tron coordinate system: it is 
easy to generate all of the usual visual display features that have proved useM 
in previous representations of calculational results. Contour plots emerge in 
straightforward fashion from the configurations of f-trons. Fluid streaklines are 
easily generated by embedded marker particles that move with the actuai local 
fluid speed. 
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The full development of the DOC method requires the assembly of a number 
of elements, most of which are discussed in detail in this report. They include 

1. Formulation of the j%ron equations of motion, 
2. Proof of their conservation properties, 
3. Efficient neighbor-search routines, 
4. Interpolation routines, 
5. Creation and destruction criteria for f-trons, 
6. Boundary conditions derived from flux expressions in order to assure 

conservation, 
7. Techniques for assuring numerical stability. 

At the present time, most of the developmental difficulties have been overcome 
for the specification of the DOC method in one space dimension, and several 
features for multidimensional problems have also been determined. Most of the 
discussion, however, is limited to the one-dimensional version. 

EQUATIONS OF MOTION 

In usual Eulerian form, the equations of motion for a compressible fluid are 

8P 
at= - & on + 4A 

am 
at= - & (zm + p + q2), 

ae 
at= - & Me + P> + 931, 

where, p, m, and e are, respectively, the densities of mass, momentum, and energy; 
p is the pressure; and ql , qx , q3 are added terms required for numerical stability, 
as described below. In addition, there is an equation of state p = p(p, I) in which I 
is the specific internal energy. To complete the equations we have the relations 

nz 5 pu, 

e = p(+u2 + 1). 

Equations (l)-(3) are all of the conservative form 

(4) 

(5) 

af aFf -- 
at= ax (6) 
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and we shdi see that this is necessary for the achievement of conservation in the 
jXron dynamics equations. 

To derive an expression for the velocity of an f-tron, it is sufficient to observe 
that along the path of its motion, the value off remains constant. Thus 

along the path such that dx/dt = Us, thef-tron velocity. Accordingly, 

Combination of this with Eq. (6) gives the result 

In particular, 

are the velocities, respectively, of p-trons, i?z-trons, and e-trons. If 3cf is the coor- 
dinate of anf-tron, then the equations of motion are completed by the kinematical 
relationship 

CONSERVATION 

Derivation of the approximation equations appropriate for resolution with a 
finite number of f-trons requires a careful consideration of the nature of the 
conservation that must be achieved. It is reasonable to assume that the total 
amount off associated with the j-th f-tron is given by the product of the value 
off carried by that f-tron and the fluid volume surrounding it. The fluid volume 
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in one space dimension is the sum of distances from the f-tron to the mid-points 
of its two adjacent neighbors: 

Volume, = &(x,+1 - Xj) + $(Xj - Xi-l) 
= Q(xj+l - xj-3. 

Thus, summing over a set off-trons, we see that the quantity to be conserved is 

G = ; fJ;(xjtl - xj-J. (13) 
3=1 

By conservation, we mean that changes in G can occur only from processes taking 
place at the ends of the summation set, so that no changes in G are attributed 
to interior gains or losses. This stringent requirement almost uniquely specifies 
the way in which the gradients in Eqs. (9)~(11) are to be approximated, leaving 
freedom only in the manner of expressing inter-f-tron fluxes. 

To proceed, we employ a summation by parts, whereby the expression for G 
can be transformed algebraically to the form 

(The identical equivalence of Eqs. (13) and (14) can be proved by rewriting the 
summations in either equation with the indices offset by fl, where appropriate.) 

A formulation of the conservation criterion can be stated as follows: The time 
rate of change of G in Eq. (14) must receive no contributions from the interior 
parts of the summation term. Thus, we write 

(15) 

and inquire as to the circumstances in which the interior parts of the summation 
term in Eq. (15) identically vanish. Once those circumstances have been found, 
then the remaining parts of Eq. (15) consist only of flux terms for each end of the 
summation set. It is these flux terms that lie at the heart of the boundary-condition 
derivations. 

Insertion of Eqs. (8) and (12) into the summation term in Eq. (15) transforms 
that term to the following: 
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Accordingly, we conclude that the quantity 

must be independent of thef-tron value interval, which is to say that 

in which 6x; z +(x~+~ - x+~). In addition, it follows tbat we must require 

in which (Ff),+j+l is the flux from f-tron number j to $tron number j + 1. These 
requirements assure that the interior parts of the summation vanish, since the 
terms in that sum cancel in pairs, leaving 

Our conclusion, putting zli = dvx/dt, is, therefore, 

dG 

This, together with Eqs. (16) and (17), are the principal conclusions from the 
conservation analysis. In summary, they show how the gradient terms must be 
approximated, and the nature of the flux terms at each end of any summation 
set. These flux terms are each composed of two parts. The first is a pseudo- 
convective flux, which occurs in a ZIP-like form [2], while the second accounts 
for inter-fitron fluxes that arise from the fact that f-trons actually do not move 
with fluid speed (so that the pseudo-convective fluxes do not describe true fluid 
convection effects), and that there are force and work fluxes of momentum and 
energy. 

THE DIFFERENCE EQUATIONS 

Reference to Eqs. (l)-(3) shows that the flux expressions are 

Fo = m + 91, 
F, = zmz + p + qz , 

F, = de -I- P> + 4s - 
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Through combined neighbor-search and interpolation procedures, it is possible 
to determine the values of m, U, e, and, therefore, p and p at the position of every 
kind off-tron. The value of 4 is less direct; it usually requires a knowledge of a 
field-variable gradient. With these quantities determined at every f-tron position, 
the Auxes there can be calculated by means of Eqs. (19)-(21). 

Combining Eqs. (8), (16) and (17), we see that the f-tron velocities must be 
calculated by the equation 

uf = 2 (E;)r4+1 - (Ffh-1-j 

h+1 -h-1 . 

(22) 

Thus, it is not the flux at each f-tron position that is required, but rather the 
inter-f-tron fluxes. These can be found in any symmetric fashion; that is, by any 
procedure such that, when h- = j + 1, (E;)j+j+l E (r;;>k-l+s . For example, the 
algebraic average of the twof-tron fluxes could be used: 

(23) 

(24) 

(25) 

Alternatively, there may be some advantages to the use of ZIP-type fluxes [2], 
with which we would write 

It must be emphasized that the necessary quantities entering into each flux must 
be calculated from interpolations at the particular f-tron for which Ff is being 
evaluated. The forms of the interparticle q terms are not yet specified, various 
alternatives being discussed below. 

The formation of interparticle fluxes by simple algebraic averages has one 
valuable property not obtained from the ZIP-type fluxes. For such a procedure, 
in the absence of the q terms, Eq. (22) could be written 

uf = (F&+I - (I;;>+1 
“ii+1 -h-1 . 

Forfequal, successively, to p, m, and e, Eq. (26) becomes the set of three Rankine- 
Hugoniot equations, with uf in every case being the shock velocity. In this case, 
the DOC method treats every finite-difference step as a shock, and propagates its 



NUMERICAL CONTOUR DYNAMICS 221 

properties with the usual conservative shock relationships. Numerical calculations 
with both flux types, however, show very little difference in results for both shock 
and rarefaction propagation, as long as the structure is otherwise sufficiently 
resolved for accuracy. 

The basic set of equations for the dynamics has now been specified. To com- 

pletely define the methodology, we need add onlji the discussion of q terms, the 
specification of initial and boundary conditions, and appropriate procedures for 
the creation and destruction offitrons. 

THE Q TERMS 

Artificial terms for numerical stability are required only for the calculation 
of shocks, in which there would otherwise be a tendency for f-trons to cross over 
one another. Analytical and calculational results show that no such terms are 
required for rarefactions or contact surfaces. Accordingly, it is important that 
the forms of the q terms be chosen in such a way as to avoid the introduction of 
excessive diffusive (or other) effects where they are not needed. 

The usual concept of an “artificial viscosity” is illustrated by choosing q1 = 0, 
q2 = -( V)(&~/~x), and q3 = t”qa , in which F’ is a constant. A test of this, however, 
shows that it does not prevent p-tron crossover in shocks. 

A better form is 

ql=-yg- > 
i 

q2 = -V$,}; 

q3 = --T/%e I ax ‘J 

(27) 

in which again V is a constant. With this, the smeared thickness of a shock can 
be estimated as 

thickness w $ j 

in which 6U is the velocity jump across the shock. 
With Eq. (27) it is not sufficient to simply set the q terms to zero for eveg 

Ftron pair that is moving apart. This could still allow for a spreading effect of 
any drift perturbation that would occur, for example, at the bounding f-trons of a 
contact discontinuity. In addition to vanishing 9 terms for spreading f-trons, it is 
useful to require that V be proportional to the magnitude of the gradient of some 
quantity (velocity, for example) that should be constant across the contact dis- 
continuity. 
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Other forms of the 4 terms can also be envisioned. For example, 

au 
41 = - Vf ax 3 

q2 = - vm -+ ) 
ax 

q3 = -&?au 
ax . 

This, too, has been tested in numerical calculations, but has not proved very 
successful in preventing3tron crossovers. 

INITIAL AND BOUNDARY CONDITIONS 

Initial conditions for a calculation program that does not allow for f-tron 
creation or destruction must containf-trons of all those magnitudes that will be 
required. Relatively few interesting problems can be investigated with such a 
limited program. In general, with the incorporation of all required capabilities, 
the computer program can commence a calculation with nearly arbitrary initial 
conditions. In some cases, however, it is likely that the use of very smallf-tron 
intervals adjacent to larger ones will result in numerical difficulties. 

In many cases of interest, the boundary conditions of the problem can be 
described uniquely in terms of fluxes at some position (perhaps moveable) in 
space. At a rigid wall, for example, there is no flux of mass or energy, and the 
pressure gradient is flat. 

One way to achieve the prescription of fluxes is by means of image Jtrons. 
A rigid wall at x = 0, for example, would have image p-tron, r?z-tron and e-tron 
at coordinates that are always the negative of the first real correspondingf-tron 
within the true fluid region. The image nz and u values would be the negatives of 
the corresponding interior values; while the image values of p and e would be the 
same as the interior values. 

For prescribed inflow conditions at a wall, the image and interior values would 
average to the prescribed wall values. Prescribed inflow can also be accomplished 
by simply placingf-trons with the inflow properties at the wall position. 

Free-surface boundary conditions would also be described by null fluxes of 
mass and energy; in addition, the flux of momentum would have to vanish. 

In testing or applying the methodology, the general prescription for deriving 
boundary conditions is, therefore, much like those that are used in most other 
types of numerical solution techniques. It is necessary to assure the proper flux 
and gradient values, for which purpose the introduction of imagefitrons or pre- 
scribed positionf-trons will usually be convenient. 
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Two EXAMFLES 

The DOC method as described so far is illustrated by the calculations of a 
propagating shock and a propagating rarefaction. Neither requires the creation 
or destruction of f-trons. 

Figure 1 shows the f-tron positions and theoretical solution for a rarefaction 
fan moving to the right from an initial position very close to the left wall. The 
center of self-similarity is located at the left side of the figure. The,&tron values 
were chosen to have nonequal intervals; agreement with the analytical solution 
is nevertheless good. 

In Fig, 2 are plotted thef-tron positions for a shock traveling to the right. In this 
case the ,ftron intervals are uniform. The numerical shock position lies slightly 
to the right of the analytical prediction, an error that resulted from an effect 
occurring just after the calculation began, but getting no worse thereafter. The 
e-trons are not shown because they lie almost exactly in the same positions as 
the In-trans. The 4 terms are as shown in Eq. (27), with Veqdal to a constam value, 
Comparison runs with several F’ values show only the expected changes in shock 
width. In each case there was the same initial adjustment that puts the s&rock 

FIG. 1. Comparison of numerical and analytical solutions for a rarefaction moving towards 
the right. 
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FIG. 2. Numerical solution for the example of a shock moving towards the right. Initially 
the shock was at the left of the figure. 

ahead of its proper position, with correct shock speed thereafter. Comparison 
runs were also made to show the effects of the two types of flux expressions, 
Eqs. (23)-(25) and Eqs. (23a)-(25a). The results are so nearly the same that they 
would not be visible on the scale of Fig. 2. 

The initial conditions for these calculations are specified by supplying the 
appropriatef-tron coordinates for the problem in a short spatial interval near the 
left boundary. For the shock, for example, the f-trons were located in such a way 
as to represent a linear variation of each profile across the spatial interval from 
1.0 to 2.0. For the various values of V, this spacing would then either increase or 
decrease as the shock subsequently propagated to the right. For the rarefaction, 
the initial spacing extended from 0.0 to 0.2. In both cases, thef-trons at the wall 
supplied the required boundary conditions. 

CREATION AND DESTRUCTION OF-~-TRONS 

It often occurs in fluid flow that the value of some field variables increases 
locally to values that exceed those of the adjacent fluid elements. To resolve such 
a situation, the creation of f-trons will be required. Conversely, the smoothing 
of an extremal in some field variable value will require the destruction of f-trons. 
Both of these processes, creation and destruction in the vicinity of an extremal, 
proceed in pairwise steps. 

A related process can also be found, which requires f-tron splitting or coalescense. 
Where the spatial variation of some field variable had been monotonic, there may 
arise an inflection. The simultaneous or subsequent vanishing of the field-variable 
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FIG. 3. Qualitative illustration of pairwise $tron creation for an increasing extremal in a 
profile propagating to the right. 

FIG. 4. Qualitative illustration of triplet slitting at a horizontal inflection, and subseqtient 
pair creation and destruction in extremals. The profile is propagating to the tight. 

gradient will then require the splitting of one fitron into three, the new lateral 
ones having the samefvalue as that of the central one. 

These two processes are illustrated in Figs. 3 and 4. The horizontal lines in the 
figures show the equal-intervalf-tron levels, while the curves show a hypothetical 
sequence of field-variable profiles at a succession of times. (For both figures, the 
profile propagates to the right as time increases.) 

For the creation or destruction off-tron pairs, we note the following features: 

1. Creation of a pair of equal-valuedf-trons will always occur only between 
members of a pre-existing pair of equal-valuedf-trons, and only if they are moving 
apart from each other. 

2. Destruction of f-trons can only occur in pairs, involving two of equal 
value that are moving towards each other. 

3. One member of a pair may be an imagef-tron, across a boundary position 
and outside of the region of the true fluid. 

4. Each “fitron pair requires data as to the extremal level for the region 
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between the pair members. Let the pair be numbers j and j + I, and let J;:fl,B be 
the extremal value for the interval. Then&.+,l, varies according to the equation 

&_ (Ffb - (I;;>j+1 
at xi+1 -xj ' 

in which the fluxes are evaluated at the pair-member positions. Wheneverfj:+rl, -h 
changes sign, the pair should be destroyed, with f-j+lla becoming the in-between 
value ,for ftrons j - 1 and j + 2. (Note thatfj-l andfj+, would be equal to each 
other, except in the case of triplet coalescence, for which see below.) Conversely, 
wheneverfj+,l, lies outside the intervalfj & Sf, where sfis the fixed?tron interval, 
then a new pair would be required, with fj.+liB again becoming the in-between 
value for the new pair, and fj Jr Sf being the f-tron value for the new pair members. 

5. The coordinates of the newly created f-tron pair can be determined by 
passing a parabolic f profile among J;: , Jtllz , and &, , assuming that J;:+rle is 
located at the midpoint between the preexisting pair, for which the coordinates 
are Xj and xj+r . The resulting coordinates for the new pair are 

This equation is also valid if Sf < 0 and&,,, <J; . 

For the coalescence of anf-tron triplit, or the splitting into a triplet, there also 
are some guiding ideas that can be described. 

1. Coalescence must always occur in triplets. Thus, whenever the criterion 
for pair destruction is satisfied, a test should be made of the f values of the f-trons 
adjacent to the pair. If one or the other has the same value as that of the pair 
members, then triplet coalescence is indicated, the two lateral members of the 
triplet being destroyed with the central one remaining at its former coordinate 
and f value. 

2. The criterion for triplet creation would seem most appropriately to be 
based upon the distance to nearest adjacent neighbors. In general, it should be 
based on the reversal in sign of aflax, but this cannot be sensed in the method 
as here proposed. Instead, the occurrence of isolation for any particular f-tron 
should be taken as indicative of the tendency to a reversal of the sign of aflax, 
so that a trial splitting should be made whenever the nearest distance to a neigh- 
boring f-tron exceeds some specified or calculated value, D. All members of the 
newly created triplet will have the same f values. What must be determined are the 
coordinates of the lateral members, and the in-between f values for each of the 
pairs, of which the central one is the original f-tron with unchanged coordinate, 
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and is a common member for each pair. Note, however, that Eq. (22) will give 
trouble for auf-tron triplet, indicating that in this special case, the value of lip i’or 
the central member should probably be calculated as an average of the values fo; 
the two lateral members. 

3. The coordinates of the lateral members formed on each side of the central 
]3ron, which is number j, should be xj - fD and Xl + CD, where D is the criterion 
distance and & is a numerical constant less than about 0.5. 

4. The in-between f values, denoted by h-1:t and h+llz , should differ frem 
fj by equal magnitudes, one value exceeding jj and the other being less. Let j - 1 
and j + 1 still refer to the preexisting lateral neighbors off-tron number j, before 
the triplet splitting. If & <J; , then we expect .& > J;: ; otherwise, f-tron 
number j would have to be one member of an equal-valued pair. In this case, 
we expect f;.-l/e > fj andJ;-+,,,, < fj , in order that a true inflection is represented. 
Conversely, if .&-1 >h , then .fi+, < fi ; and we expect J$-l/z <f; ? ,G+,!, >J; . 
To calculate,f&:, , we pass an antisymmetric cubic amongftrons at xI; ) xj -+ (0 
and ,~j+~ ) at which points the f values are, respectively, J; , .f;, j and ,fj + &r? Then 
.h,.lIz is evaluated at X~ + $$D, with the resuit 

This formula would also be valid if Sf < 0. 

5. With these procedures for triplet creation completed, each pair can then 
continue in the pair-wise fashion described previously. As the extremals of the 
i&e&ion increase in amplitude, additional pairs should be inserted whenever the 
creation criterion is satisfied. In addition, as in Fig. 4, pair-wise destruction may 
be appropriate, even resulting in the annihilation of the originalf-tron which had 
split into the triplet. At a later stage: if both extremals of the inflection have 
decayed sufficiently in amplitude then a triplet coalescence will be the final stage 
of the smoothing process, the center of the coalescence usually being an entirely 
different Ftron from that which had originally split. 

CYLINDRICAL OR SPHERICAL COORDINATES 

For one-dimensional fluid dynamics investigations in cylindrical or spherical 
geometries, the basic DOC methodology remains the same. The flux equations 
must be properly modified to include the appropriate functions of radius; %he 
examination of conservation requires a slightly different definition of vo1um.e; 
and the creation-destruction processes require slight modifications for the 
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in-between-value formulas. These generalizations are easily accomplished, so that 
the detailed formulas need not be written here. 

MULTI-FLUID PROBLEMS 

If a problem involves several different types of material, then Lagrangian 
markers are useful for definition of the interface position. Some types off-trons 
will pass easily over the interface; others (for example, p-trons) may tend to accu- 
mulate at an interface, just as they would at a contact discontinuity within a one- 
component fluid. This close-packing at an interface may lead to numerical insta- 
bility, unless special procedures are used for those f-trons for which proximity 
to an interface marker is sensed. One technique that seems worth trying is to have 
the interface markers serve as source or sink positions forf-trons. 

SEVERAL SPACE DIMENSIONS 

DOC methodology for fluid dynamics calculations in several space dimensions 
is complicated by one particular difficulty, namely, defining the volume of space 
about eachf-tron. In two dimensions, anf-tron is a contour line; in three dimen- 
sions, it is a contour surface; in each case, the volume (per unit contour length 
or area) must be given by the sum of the distances half-way to the two adjacent 
f-trans. If the contours are not too strongly distorted, the volume definition 
becomes relatively unambiguous. For strongly distorted contours (for example, 
during the process of pair-wise mutual destruction of two adjacent f-trons) the 
definition may become extremely difficult to formulate. 

Nevertheless, it seems entirely possible that a multidimensional version of the 
DOC method will be feasible, giving a powerful methodology with optimal 
distribution of resolution. 

CONCLUSION 

The DOC method has been described as a novel procedure for numerically 
solving problems in the dynamics of compressible fluids. Proof tests indicate that 
the technique will have several advantages over all others. The principal advantage 
is the automatic achievement of fine resolution wherever required. 

WhiIe this report describes some of the necessary procedures for applying DOC 
methodology, it is clear that further developments will require considerable 
innovation in solving the difficulties that inevitably arise. 

Interested investigators can find somewhat similar methodology applied to 
solving the Vlasov equation [3], and the heat conduction equation [4]. 
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